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ELMs Represent Major Challenge to Successful Tokamak Reactor

• Edge Localized Modes (ELMs)
– Intermittent bursts of heat from plasma edge
– Present in most H-mode scenarios
– Understood to be ideal-MHD instabilities of the plasma 

edge (peeling-ballooning modes)
– Expected to melt / erode divertor in ITER if not 

mitigated

• “ITER and later reactors will require very large 
reductions in the magnitude and frequency of both 
ELMs and major disruptions based on 
extrapolations from current experiments”
– http://science.energy.gov/~/media/fes/pdf/program-

news/Transients_Report.pdf
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• ELMs can be completely suppressed by applying non-
axisymmetric Resonant Magnetic Perturbations (RMPs)

• Works on some tokamaks
– Works on DIII-D, AUG, KSTAR 
– Doesn’t work on NSTX, MAST, JET

• Only works for certain conditions
– q95 windows, collisionality/density thresholds

• Only predictive model of ELM suppression is 10 years old 
and does not consider plasma response: Fenstermacher
et al, Phys. Plasmas 15, 056122 (2008)
– We know this is not very accurate!

• We can’t predict when RMP ELM suppression will work
– This presents big risks for ITER!

RMPs are a Primary Strategy for ELM Mitigation 

Burrell, et al.  PPCF 47 (2005) B37 

Without
I-coils

With 
I-coils

I-coils activated
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EPED Model Suggests Suppression Is
Due to Enhanced Transport at Pedestal Top

• EPED Model of pedestal structure:
– Gradient determined by local KBM stability
– Width grows until global P-B stability threshold is 

reached (ELM)
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Due to Enhanced Transport at Pedestal Top
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• EPED Model of pedestal structure:
– Gradient determined by local KBM stability
– Width grows until global P-B stability threshold is 

reached (ELM)
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• EPED Model of pedestal structure:
– Gradient determined by local KBM stability
– Width grows until global P-B stability threshold is 

reached (ELM)
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EPED Model Suggests Suppression Is
Due to Enhanced Transport at Pedestal Top

maximum 
gradient
Is unchanged

width
grows

Unstable!

1/23/19 NM Ferraro - PPPL/UMD Stellarator Mini-Conference 6



• EPED Model of pedestal structure:
– Gradient determined by local KBM stability
– Width grows until global P-B stability threshold is 

reached (ELM)

• Implies model of ELM suppression:
– Something stops widening of pedestal before 

threshold
– Requires enhanced transport at Ψ ≈ 96–97%
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EPED Model Suggests Suppression Is
Due to Enhanced Transport at Pedestal Top

Stable!
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• EPED Model of pedestal structure:
– Gradient determined by local KBM stability
– Width grows until global P-B stability threshold is 

reached (ELM)

• Implies model of ELM suppression:
– Something stops widening of pedestal before 

threshold
– Requires enhanced transport at Ψ ≈ 96–97%
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EPED Model Suggests Suppression Is
Due to Enhanced Transport at Pedestal Top

• Predictive modeling needs model of RMP effect on transport
– Enhanced neoclassical transport?
– Turbulent transport (KBM)?  
– Magnetic islands / stochasticity à parallel transport?

Stable!
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• Measurements show change of rotation 
and pressure profiles in ELM-suppressed 
state
– c.f. Nazikian, et al. PRL 114, 105002 (2015)

• Modeling shows enhanced tearing near 
pedestal top in ELM-suppressed state
– ωe = 0 moves outward
– M3D-C1 shows enhanced tearing response 

where ωe is small

• Still, implied islands would be small; is 
this enough to stop pedestal growth?
– Need to quantify this!

Significant Enhancement of Tearing Response 
Calculated in ELM-Suppressed State
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New Project Will Combine 3D Tokamak Equilibrium & 
Transport Calculations to Understand ELM Suppression

• 3D equilibria can be calculated with M3D-C1
– Plasma response strongly affects magnetic geometry
– Allows islands, stochasticity
– Two-fluid effects are important in edge due to strong diamagnetic flows

• Effect on various types of transport can then be calculated
– Interfaces have already been developed between M3D-C1 and XGC, GTC, 

SPIRAL, TRIP3D, EMC3-EIRENE, and 3D NEO

• Goal is to analyze broad set of data
– Lots of noise introduced by individual EFIT reconstructions; need 

statistics
– DIII-D, NSTX(-U), MAST(-U), KSTAR, AUG(?), EAST(?)
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Summary
• ITER is counting on RMP ELM suppression – but we don’t know under 

what conditions it will work

• Pedestal models suggest ELM suppression might be due to enhanced 
transport at top of pedestal

• New project is underway to evaluate various transport channels given 
high-fidelity 3D tokamak equilibrium calculations
– Lots of crosscutting issues with stellarators here!

• Ultimately, we seek a validated, predictive model of RMP ELM 
suppression to gain confidence that it will work in reactor-relevant 
scenarios
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Extra Slides
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M3D-C1 Is Parallel, Finite-Element Code Using Unstructured, 
Multi-Region Mesh

• Triangular C1 finite elements on unstructured mesh

• 3 regions inside domain:
– XMHD (Extended MHD)
– RW (E = ηWJ)
– Vacuum (J = 0)

• Boundary conditions:
– v, p, n set at inner wall
– B set at outer (superconducting) wall

• There are no boundary conditions on B or J at the resistive wall
– Current can flow into and through the resistive wall

XMHD

Vacuum

RW

Superconducting
Wall
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• (R, φ, Z) coordinates à no coordinate singularities in plasma
• Boundary conditions:

– Linear, time-independent (plasma response) – single n
– Linear, time-dependent (linear stability) – single n
– Nonlinear, time-dependent (nonlinear evolution) – toroidal finite elements
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• Kinking: amplification of non-resonant field 
components
– Makes distortion of surfaces larger than implied by 

applied fields

• Screening: reduction of resonant field 
components
– Makes islands smaller than implied by applied 

fields 

• Tearing: when plasma response fails to screen 
resonant components
– Only possible in non-ideal response 

Linear MHD Modeling Shows “Kinking,” “Screening,” and 
“Tearing” in Response

Applied Field

Total Field
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Experiments Clearly See “Kink” Response

• Including plasma response is necessary to accurately 
model edge measurements
– Te, ne profiles in edge strongly affected by “kink” response
– Linear modeling is successful in reproducing measured profiles; 

magnetics data

JD King, et al.  Phys. Plasmas 22, 072501 (2015)

NM Ferraro, et al.  
Nucl. Fusion 53, 
073042 (2013)

IPEC VMEC
MARS M3D-C1
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• Measuring small islands (~1 cm) is very 
difficult experimentally

• In transition into ELM-suppressed state, 
a bifurcation similar to the formation of a 
locked island is observed
– Temperature flattening near top of 

pedestal
– Non-rotating magnetic signal

• No island is seen directly.  Modeling is 
still needed to understand results
– Truly predicting island formation requires 

nonlinear modeling

Experiments See Hints of Island Formation 

Nazikian, et al.  PRL 114, 105002 (2015)
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